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Abstract 

Daily NASA Scatterometer (NSCAT)  wind estimates cover about 75% of the globe. The 

remaining data gaps, which require interpolation, are regularly distributed in space and time. 

The development of this interpolation algorithm was guided by a balance between the smooth- 

ness of the end product  and  its fidelity to  the original data. Three-dimensional matrices of 

autocorrelation coefficients incorporate information about  the dominant propagation pattern 

into the interpolation program. These coefficients are continuously updated in space and  time 

and  are used as weights to interpolate each point in a regular space-time grid. For the first 

step,  European Center for  Medium-range  Weather  Forecast (ECMWF) wind data  are used 

to simulate the NSCAT data distribution  and interpolated using two different methods: one 

uses a single set of coefficients  from a prescribed function based  on the average decorrelation 

scales and  the other uses the locally estimated autocorrelation coefficients. The comparison 

of these results with the original ECMWF maps favors those based on the autocorrelation. 

For the second step, daily maps of bin-averaged NSCAT  wind data  are compared to those 

interpolated by the correlation-based method and  to those interpolated by successive  cor- 

rections. Average  differences  between the original and interpolated fields are presented for 

the areas covered  by the swath and for the gaps. The two-dimensional  wavenumber spectra 

are also compared. The correlation-based interpolation (CBI) method retains relatively more 

small scale signal while  significantly reducing the swath signature. 
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1. Introduction 

The  major  advantage of using wind fields from  satellite-based instruments is that global 

coverage is provided with a relatively fine resolution both in  time  and  space.  Although nume- 

rical weather  prediction models provide global coverage, the  spatial resolution of space-borne 

scatterometers is finer (Liu et  al.  1998).  Satellite  scatterometers collect the backscattered 

radar signal from the ocean surface at  an off-Nadir angle as they move along a polar  orbit. 

The collected data  are  distributed in bands  (swaths) that follow the  orbit of the satellite. 

In one day NSCAT samples  approximately 75% of the surface of the  planet. Atmospheric 

features  change  shape  and move  while the  satellite is still  completing its daily  sampling rou- 

tine.  Consequently a composite  map of the wind samples  has two major problems: regularly 

spaced data gaps  and a regular pattern of ascending and descending orbits. The  data gaps 

are regularly  spaced in each map,  but  do  not occur necessarily in the same place in successive 

maps.  The  orbit  pattern is a consequence of averaging in a single map  data from two or 

more satellite passes, collected at different times. The wind  field changes from orbit  to  orbit 

and these  changes become apparent  due to  strong wind gradients where the  samples overlap. 

The simplest  solution would be to average over an  area  and/or a period long enough so 

that a complete, smooth global map is obtained. However, several problems  arise from this 

approach. Small-scale atmospheric  phenomena  are generally short-lived and therefore lost 

in the averaging process. Averaging for a period that is long in relation to  the motion of 

atmospheric  features  results in maps  with weak winds and deformed fronts. More sophis- 

ticated  techniques (Legler and O’Brien 1985; Kelly and  Caruso 1990; Tang  and Liu 1996) 

have demonstrated that these problems can be minimized by interpolating  the  gaps on global 
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maps assembled over a period on the order of one day. Optimal  interpolation is generally 

performed using an  analytical  approximation of the  autocorrelation fields, constant in space 

and  time  to minimize the  computational cost of the procedure. The basic assumption in 

this case is that  the  statistics  are approximately  constant over the  area  and period covered 

by the  interpolation.  This  assumption becomes a problem when a global wind data set is 

to be processed: for example,  atmospheric  features in the Tropical Pacific move and evolve 

in spatial  and  temporal scales different from those of the  Antarctic  Circumpolar region and 

wind patterns change significantly in time over the Indian Ocean during  the Monsoon season. 

The  method presented in this  study uses the three-dimensional  autocorrelation coefficient 

matrices derived directly from daily bin-averaged maps in a regular  grid for the  interpolation 

onto  the  same grid. The  autocorrelation matrices are continuously updated in  space and 

time. The main  objective of this  study is to construct  an  interpolation scheme that (a) has 

NSCAT as the only source of data, therefore allowing for an  independent  comparison  with 

other wind estimates, (b) minimizes the swath  pattern  signature significantly, and ( c )  has 

relatively small energy loss especially in the high-wavelength band. 

The next  section  explains the  interpolation  method,  its  parameters  and the general dif- 

ferences between this  method  and  some  other  popular  algorithms.  Sections 3a and 3 b  discuss 

the  application of this  method in two different scenarios. In the  first,  experiments  with simu- 

lated data show how changes in the  input  parameters affect the results.  A general comparison 

is also made between the correlation-based  interpolation  and a comparable scheme based on 

a  symmetric  analytical  correlation  function. In the second, results from the  interpolation 

of NSCAT data by two different schemes (correlation-based and successive corrections) are 

compared. As the two methods  depend on different sets of parameters  this comparison is not 
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intended to rank  the  methods.  The goal is simply to build confidence in this new method 

by comparison to a well established one. A general discussion of the main results  and  the 

pertinent conclusions comprise the Section 4. 

2. Interpolation  Method 

The correlation-based  interpolation  (CBI)  method uses a sequence of regularly  gridded 

maps of a wind speed  component as input. These  maps may have data gaps,  indicated 

by a  numerical flag, which  will be interpolated over. The land masses are  indicated by a 

different flag so that no  interpolation is performed over land.  The  data grid is rectangular, 

global and 0.5" x 0.5" x 1 day. If z ( z ,  y , t )  is the wind component being interpolated, 

the  algorithm  starts by estimating  the autocorrelation coefficients in the volume centered at 

(z, y, t )  limited  within  lags of (zl = x f X ) ,  (yl = y f Y ) ,  and ( t l  = t f T ) .  The maximum 

zonal,  meridional and  temporal lags are  set as X = 4", Y = 3" and T = 2 days.  These 

parameters  are  set empirically to close the gaps left by the  scatterometer  with  the  least 

amount of data  thus minimizing the computational cost. Maximum lags ( X ,  Y, T )  that are 

very large  compared to  the average decorrelation scales increase the  computational cost and 

yield marginal  improvement  in the results since the added data  are  uncorrelated. 

As the wind field is not  statistically homogeneous, the  autocorrelation  matrices  are u p  

dated  as often as possible. In  the present case this is done at every grid  point.  Figure 1 shows 

three examples of autocorrelation  matrices  estimated from daily ECMWF zonal wind data 

with 1" resolution. The  top row shows the  the  estimates at 165.5"W, 24.5"s on November 

21, 1996. The middle row is  for the  same  date,  but at  179.5"E, 35"s.  The  bottom row  is 
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for the  same location as the middle row but 5 days later. A comparison of corresponding 

plots of the  top  and middle rows  shows that  the correlations may differ significantly from 

place to place in the  same  date (in this case within less than 2000 km) . Similarly, the middle 

and  bottom rows  show different correlations  estimated at the same place with a 5 days  time 

difference. 

Many popular  interpolation schemes use elliptically  symmetric  analytical  functions based 

on the average data covariance and  error  structures.  In Section 3a an  interpolation scheme 

based on an analytical  symmetrical  correlation  function (ASC) is used to represent this 

class of methods in comparison to  the CBI method. These  analytical  functions decay with 

distance  from  the origin with a decay scale adjusted to match  the observed decorrelation scale 

in each dimension (Carter  and Robinson 1987). However, Fig. 1 shows patterns  that  are not 

circularly  symmetric and have variable decorrelation scales. Slanted patterns  in  the zonal x 

temporal  (top  right)  or meridional x temporal  (bottom center) correlation  indicate phase 

propagation of atmospheric  features.  These  patterns change in time  and space.  Therefore, 

the estimated  correlation  cannot be properly substituted by any single analytical  function. 

This is the basic reason that justifies the  computational cost of estimating  and  updating  the 

local correlations.  In addition,  interpolation schemes whose  kernel is a least-squares  fitting 

solution (e.g. objective  analysis) are sometimes  unstable because of the inversion of rank- 

deficient matrices. Besides being mathematically  simpler,  this weighted average algorithm 

is unconditionally stable. 

The  autocorrelation coefficients, c ( q ,  511 ,  tl),  used in the  interpolation  are  calculated at  
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each location ( x ,  y, t )  by : 

where z = z(x, y, t )  and z1 = z(x + x1, y + yl, t + tl) are elements of the scalar matrix  to  be 

interpolated (e.g., u, the zonal component of the wind vector). z and zl are  separated by 

spatial lags x1 and 311, and  temporal  lag tl. The  autocorrelation is divided by eo(xi, y1, t l )  

(Eq. 2) to avoid the large statistical  fluctuations that occur at large  lags due  to  the  small 

number of factors in the sums. 

The  rms  error of the correlation, a,(xl, yl, tl),  is estimated at each location ( x ,  y, t )  by: 

where a,(x, y, t )  and a,, (x+xl, y+yi, t+tl) are relative  errors of the  measurements associated 

with the precision of the  instrument. These are assumed to be constant in  space  and  time 

and have a value of 20% for all presented cases. The sums, like in Eq. 1, are performed over 

all possible lags. 

Each interpolated  point z'(z, y, t )  is obtained  from  the weighted average of N, selected 

points  (the selection criteria  are discussed next) using the  autocorrelation coefficients ( c )  as 

weights: 

c c - z  
cc z'(z,y,t)  = - . 

The rms  error of the  interpolated  data, a,t(x, y, z ) ,  is estimated from: 
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where N, is the number of selected points. The sums in Eqs. 4 and 5 are performed over N, 

points. The interpolated data are  not recursively used in the  interpolation process. 

The  criteria  to select data points  and weights are in the averaging process have two 

adjustable  parameters:  the  maximum number of points Np and  the minimum  correlation 

threshold cmin. The  autocorrelation  matrix with N = (2X + 1)(2Y + 1)(2T + 1) points is 

sorted  and  up  to Np coefficients larger than c,i, are used. 

If less than a minimum number of points (np) remains  after the selection criteria  are 

applied, a canonical  correlation matrix (c,) is used instead of the  estimated one (thus N 2 

Np 2 N, 2 np). For all  experiments np is set to 5. The coefficients of the canonical 

correlation  are  calculated by: 

with t l  in  days  and xl, yi in degrees. This is a symmetric inverse-distance function that  has 

decay scales similar to  the average of those inferred from ECMWF winds and is used in less 

than 1% of the cases. In the ASC scheme Eq. 6 is  used to provide a symmetric  set of weights 

for every point, as opposed to Eq. 1 used for the CBI  method. 

The zero-lag coefficient, c(0, 0, 0 ) ,  is a parameter of the  interpolation scheme. Instead of 

being obtained from Eqs. 1 or 6 it can  be simply set to a  prescribed value. c(O,O, 0) is the 

weight attributed  to  the  data  at grid  point being interpolated.  Therefore,  the  larger  this 

parameter  is compared to 1, the closer the interpolated data will be  to  the  input  data. 
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3. Results 

a. Experiments  with  simulated NSCAT data 

1) Description of the  tests  and of the  input  data 

A complete  global map  without  gaps is  used as a standard  to compare the performance 

of the  interpolation  methods. Such maps  can  be  obtained  either  from  interpolated in situ 

data or from numerical  weather  prediction models. Interpolated in situ maps have very low 

temporal  and  spatial resolution due  to  the lack of data. Although the wind data generated 

by numerical models have less small-scale structure  than  the  scatterometer  data (Liu et  al. 

1998) they  are  still  the  best possible alternative for this study. Input fields that resem- 

ble scatterometer  data  with  its regular  gaps  and  gradients due  to overlapping swaths  are 

constructed from these global maps. Two sets of tests  are performed with the  simulated 

scatterometer  data. 

At first, zonal 10 m wind estimates from ECMWF,  with  a  resolution of 1" x lo, from 

November 15 to December 4 of 1996 are used to simulate NSCAT data.  Two  ECMWF 

maps,  one  taken at 122  and one at OOZ are  interpolated to 0.5" x 0.5" grid using a bicubic 

interpolator. For each period of 12 hours before and  after 122 the NSCAT swath  data  are 

bin-averaged making two composite  maps.  These composites are used simply as a flag to 

delete data from two consecutive ECMWF maps in the  same places where the NSCAT has 

sampling  gaps.  The two maps of ECMWF data with  gaps  are bin-averaged to generate 

one  daily map. These  daily  maps are used as input to  the  interpolation  programs  and  are 

referred simply as input. This  method simulates not only the  gaps  but also the  gradients 
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at the edges of overlapping  swaths that characterize  scatterometer  data.  These  gradients 

are included in the  simulations because they influence the correlation and  can  potentially 

change the results. A second ensemble of tests was performed using input  data without 

the overlapping  swath  gradients. The  data gaps  remaining  after bin-averaging 24 hours of 

NSCAT data were simply removed from the  ECMWF file  for 122. The original map (2.e. 

the  “true” wind field) is the ECMWF  synoptic map for 122. This allows for a comparison 

of interpolators based on a synoptic field. 

The  tests used two algorithms,  the CBI which  uses the  estimated  autocorrelation,  and  the 

ASC representing the  interpolation schemes based on analytical  functions. The combination 

of two input  data  sets  and two algorithms yields the four groups of tests shown in  Table 1. 

Within each group  three  parameters of the  interpolation were changed: Np, h i n  and c(0, 0,O) 

(cg in the  table headings). 

2) An index for spectral comparison of the CBI and ASC 

An index ( I )  is devised to quantify the effects of changing the  interpolation  parameters 

in terms of a balance between smoothing and  eliminating  the  swath  gradients.  This  index 

compares the average value of the 2D spatial power spectrum  distribution (PSD) in two 

wavenumber-domain regimes, one mostly affected by smoothing  and  the  other  mostly affected 

by the presence of swath gradients.  Figure 2 illustrates  the origin of this index. The insets 

of Plates a and b show two hypothetical  interpolated fields,  one  very smooth (a) and  the 

other with clear swath  gradients (b) obtained from the same  original ECMWF synoptical 

data shown in the background. An 11 x 11 square  Gaussian  smoother is used to generate  the 

smooth field in a, which has no swath  gradients. The field with  overlapping swath  gradients 
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(b) is obtained following the procedure described in Section 3al where no  smoothing is 

performed. Land masses are filled with zeros  for the purpose of spectral  estimation.  The 

PSD (P)  shown in Plates c and d is estimated by 

P(k,  I )  = 10 * loglo 
256 x 256 7 

where 3 is the  spatial 2D Fourier transform of u(z ,  y, t ) ,  the zonal wind estimates inside the 

white box measuring 256 x 256 points  indicated  in  Fig. 2, Plates a and b. The absolute 

difference between the PSD of the  smooth field (a, inset)  and  the PSD of the background field 

is shown in Plate e. The approximate  location of the  spectral regions that change the most 

as a result of smoothing  are marked by the dashed  white  rectangle, defining wavenumber- 

domain regime e. Similarly in Plate f the regions that change the most as a result of the 

inclusion of swath  gradients (b, inset)  are marked by the white dashed  rectangles, defining 

wavenumber-domain regime f .  Tests performed by varying the  amount of smoothing  and 

the  intensity of the  gradients produce different spectra. Nevertheless, the white  dashed 

wavenumber-domain regimes shown in Fig. 2 include  representative  samples of the spectral 

changes related to smoothing  and  swath  gradients for all cases tested. 

The index I is defined as: 

where uo is the original field without holes or  gradients  and ui is an  interpolated field. Angle 

brackets  indicate an average over the wavenumber-domain regime indicated by the  subscript. 
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The closer the PSDs of the  interpolated  and original fields are inside the wavenumber-domain 

regime f the smaller is the  numerator of I .  Similarly for wavenumber-domain regime e, the 

closer the PSDs the smaller the  denominator of I .  Therefore, if in Eq. 8 I >> 1 the 

swath  gradients  are  too  intense for the  amount of smoothing performed by this  hypothetical 

interpolator. Conversely if I N 0 this  interpolated field is too  smooth for the  amount of 

gradients  left. 

3) Comparison of the results from CBI  and ASC 

The skill of interpolation schemes is generally measured by their  capability to reproduce 

the original field. This capability  can  be quantified in this  particular  set of tests by direct 

comparison  with the original data  (ECMWF synoptic field without holes or swath  gradients). 

The  input fields are  obtained from the original data according to  the procedure  described 

in Section 3al.  These fields provide data with  or  without  gradients, only along the  swath 

of the  scatterometer. One can anticipate  smaller discrepancies in the  swaths in  relation to 

areas  with data gaps, therefore these  areas  (swath and gaps)  are  analyzed  separately. Three 

statistical  parameters were calculated: G, the  absolute relative difference, I(uo - ui)/uol, 

averaged over all the swaths covered  by the  input  data; Auh,  averaged over data gaps,  and 

n u a ,  globally averaged. In  addition to these  parameters  the globally average rms  error 

(Eq. 5) relative to  the local uo was estimated.  Table 1 presents the  results for four  groups 

of tests which used (i) the CBI method  and  input files with gradients,  (ii)  the  CBI  method 

and  input files without  gradients,  (iii) the ASC method  and input files with  gradients  and 

- 

- 

(iv)  the ASC method  and 

h i n  and co were changed. 

input files without  gradients. In each group  the  parameters Np,  

The index I is only relevant for tests  performed using input files 

11 



with  gradients. 

A general  comparison of the index I obtained  for  the CBI and ASC groups favors the 

CBI (2.e. I is closer to  1).  The exceptions  are  extreme cases: tests 9 and  10 compared to 

tests 24 and 25. In  these cases the number of degrees of freedom is reduced by setting a large 

weight (c,) to  the zero-lag factor. This effect can also be achieved, though  not as effectively, 

by setting Np to a small  number or increasing cmi, towards 1. As a consequence the value of 

I increases, indicating a relative excess of swath  gradients in relation to  the smoothness.  The 

opposite effect is noticeable in tests 4 and 11 (or 19 and 26) where the number of averaged 

points is relatively  large. 

In tests  that use a relatively small  number of points  both  algorithms have the same 

performance in terms of Au,. Otherwise the differences are  small and favor the  CBI.  The 

relative  discrepancy over data gaps (G) is smaller for the  CBI in  all cases tested. Not 

surprisingly, Au, is also smaller for the CBI experiments. 

- 

- 

The average  relative  rms  error is strongly influenced by the  number of points used in the 

interpolation.  It is larger over data gaps compared to swaths because of the  data availability. 

Table 1 shows only the global average (c) which is generally slightly  larger (1% or less) for 

the CBI experiments. 

The  last four columns of Table 1 refer to experiments performed using input files without 

swath  gradients  and  with data gaps. Similarly to  the previous sets of experiments  (with 

. gradients)  smaller differences favor the CBI  method.  The relatively small Au, in cases 9  and 

10 (24 and 25) show the effect of increasing co. Contrariwise  experiments 4 and 5  (19  and 

20)  show large discrepancies associated  with increasing Np.  Changes  in Cmi, have a lesser 

effect than changes in the  other two parameters.  Tests  (not shown) performed with 

- 
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between zero and 0.2 give virtually  identical  results while using a c,i, above 0.4 results  in 

frequent gaps in the  output field. 

In  Fig. 3 Plate d shows the  input  data for  November 19, 1996. Plates e to p show the 

absolute differences between the  input  and  interpolated fields  for the CBI and ASC tests 

using input  data  with  gaps  and  swath gradients.  Relatively large errors tend  to occur in 

areas  with large data gaps such as the one that extends from the  upper right  corner  to  the 

SSE close to  the  Australian coast  in Plate d. Furthermore  the largest errors  inside  these data 

poor  areas  are  due  to changing winds: the blue spot between Australia  and New Caledonia 

(Plates e to p) can  be traced back to wind changes depicted in Plate c;  the large  error region 

to  the SE of Japan near 32"N, 145"W appears in both  Plates a and c.  

Plates e to p present  results from 6  pairs of tests comparing  results from the CBI  and 

ASC interpolation  algorithms. As a general observation, the  error  structures for the  CBI 

tests (e,  g ,  i, k, m, and 0)  are smaller and slightly less intense than for the ASC tests (f, h, j, 

1, n, and p). Plates e and f represent a case in which Np is relatively small.  Results for e and 

f are  almost  identical  and very small over swath  areas (colored areas  in  Plate d). The clear 

contrast between the  errors in  swath  areas compared to  data gaps is an  indication  that  the 

interpolated fields potentially have large  swath  gradients (confirmed by I in  Table 1). Plates 

g and h were produced using the  same  parameters as e and f except that Np is 20 times 

larger so the result is smoother.  In  this case the difference  between the  interpolation  methods 

. is more apparent  than  for e and f. The regions showing larger discrepancies are  broader  and 

more  intense (green shades) in Plate h (ASC) compared to their counterparts in Plate g 

(CBI). The Np and c, of Plates i and j were 5 times  larger  than in e and f. These changes 

tend  to reduce the  errors compared to g and h while the difference between the  interpolation 
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algorithms  remain  apparent.  Plates k and 1 were obtained using the  same  parameters as i 

and j except for co which is larger by a factor of 10. The average error decreases compared to 

i and j for both  the  CBI  and ASC tests while the difference is relatively clearer. In  Plate k 

the larger  errors  (greens) are confined to  the  data gaps while in Plate 1 the  large  errors  tend 

to invade part of the  swath areas. Plates m and n were obtained using the  same  parameters 

as i and j except for co, which is 5 times  smaller  without changing the  results significantly. 

Plates o and p were obtained using h i n  set to 40%, with the  other  parameters  set  to  the 

same values as m and n. In this case the number of points used in  the  interpolation is 

reduced. However, as only the weakly correlated  points are removed, there  is no  noticeable 

increase in the error. 

b. Experiments with NSCAT data 

1) Description of the  tests  and of the  input  data 

Daily bin-averaged global fields of the zonal component of the wind speed vector from 

the NSCAT data record are  interpolated by the CBI method  with  the  same  parameter  set 

used in  experiment 6 (Table 1) and compared to a  similar field obtained from successive 

corrections  (SCI)  (Tang and Liu 1996). The choice of parameter  set  is  based  on the value of 

I which is the closest to 1; likewise the errors are relatively low and none of its  parameters 

were extreme. 

The SCI scheme is based on a symmetric  analytical basis function,  conceptually  similar 

to  the ASC interpolation scheme. The most relevant characteristic of the  SCI scheme that 

differentiates it from either  the CBI or the ASC algorithms is that  it is based  on  individual 
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passes as opposed to bin-averaged daily  maps. 

The  experiments using simulated NSCAT data (Section 3a) were compared in a straight- 

forward way since the basis for comparison ( i e .  a  “true” wind field) is the original map 

from ECMWF,  without holes or  gradients.  In  the NSCAT case the crucial difference is the 

absence of a basis for comparison (2. e. there is no  “true” wind field). The presented  results 

compare  one  method  relative to  the  other  and can only provide a limited  set of conclusions. 

Figure 4 shows the  spectra for both CBI and SCI  estimated over a large area of the 

Pacific in November 19, 1996. The interpolated fields are shown as insets in Plates a and 

b (top row). Plate b (SCI) presents more  small scale structures  and more swath  gradients 

than  Plate a (CBI). However, it is necessary to quantify  these differences and  relate  them to 

the bin-averaged NSCAT data.  The  spectra in Plates c and d show more high-wavenumber 

energy for the  SCI case (d). Similarly to Fig. 2, the dashed boxes associated  with  smoothing 

(e )  and  with  the presence of swath  gradients (f) are  plotted over the difference of the  spectra. 

Visual comparison of these Plates convey little information about  the performance of the 

algorithms, a quantitative comparison is necessary. 

2) An index for spectral comparison of the CBI and SCI 

An index J is defined to quantify the balance between removal of the  swath  signature in 

relation to  the smoothing of the field, similarly to  the index I in Section 3a2: 

I 10 log,o(Rf) = < IP(ucsz) - P(uscz)I > f  
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The more  similar the  interpolated fields are,  the more J approximates  1. If J is less 

than 1 then, compared to  the SCI spectrum,  the CBI has  an excess of power in the region 

associated to smoothing (wavenumber-domain regime e in Plate e, Fig. 4) relative to  the 

region associated  with  swath  gradients (wavenumber-domain regime f )  ( i e .  the  CBI removes 

relatively less swath  gradients for the  amount of smoothing  it performs). Conversely, an 

index J larger than 1 indicates that, relative to  the  CBI,  the SCI spectrum  has more power 

in the wavenumber-domain regime e relative to wavenumber-domain regime f ( i e .  the SCI 

removes relatively less swath  gradients for the  amount of smoothing  it does). 

3) Comparison of the results from CBI  and  SCI 

For an 18-day period  in which the  interpolation was performed with  the two algorithms, 

the  distribution of the index is approximately lognormal with  mean and  standard deviation 

J = 3.5f0.8.  This  indicates that according to  the  criterium shown above the  CBI  algorithm 

provides more  gradient removal relative to  the  amount of smoothing  performed. 

The average  relative  absolute differences between the  interpolated fields and  the  input 

field are: 

The average relative  absolute difference between the  interpolated fields themselves is: 

The differences in Eq. 10 can only be  calculated  and averaged over the  swath where the 

bin-averaged NSCAT data  are available. The mean and  standard  deviations calculated over 

18 realizations of the two algorithms  are AuCBI~  = 0.13 f 0.01 and AuSCIs = 0.33 f 0.02, 
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favoring the CBI  algorithm.  The  parameters of the  CBI  algorithm  (particularly co) can be 

adjusted to  further reduce this difference (see Table l), though no deliberate effort was made 

in this sense. 

Equation 11 can be applied to swaths and  interpolated data gaps alike. Using the same 

subscripts as in Section 3a3, the mean and  standard deviation  calculated using 18 realizations 

are Auza = 0.36 f 0.03 (overall), A U ~ ~  = 0.30 f 0.02 (swaths),  and A u 2 h  = 0.47 f 0.03 (data 

gaps). Even though  the  Plates a and b in Fig. 4 have similar patterns,  there  are significant 

differences  in the local value of the zonal wind, particularly  in data gaps. Part of these 

differences is  due  to  the design of the algorithms. The SCI  method  takes  into  account  the 

time information  in each satellite  pass while the CBI method, based on the  daily bin-averaged 

maps,  treats all passes within one day as having the  same  time. 

- - - 

4. Conclusions 

Four  groups of experiments  are performed with  simulated NSCAT data derived from 

ECMWF zonal wind fields. These  experiments  apply the CBI and ASC algorithms to  input 

files simulating NSCAT data with and  without overlapping swath  gradients. A spectral 

index I (Table 1) provides a quantitative measure of smoothing in relation to  the reduction 

of swath  gradients.  Results  indicate that in terms of I the CBI method achieves a better 

balance between smoothing  and  reduction of swath  gradients than  the ASC method.  The 

discrepancies between the original and  interpolated data are mostly due  to  the changes in 

local winds, as indicated by Fig. 3 and Table 1. These discrepancies are  smaller for the CBI 

method  than for the ASC. 
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The  better performance of the CBI  method  results from the  information  about propaga- 

tion  and  deformation of atmospheric  features that enters  the  algorithm  through  the  auto- 

correlation  matrices. The ASC algorithm always assumes the same  basic structure in  space 

and  time, as do most  interpolation schemes. 

These tests  are performed based on numerical  weather  prediction  winds which are  char- 

acteristically  smoother  than  scatterometer winds. The  interpolation  errors  in  these  tests  are 

probably  underestimated  in  relation to those based on actual  scatterometer winds. 

Although  limited by the differing assumptions of the CBI and SCI methods,  a  direct 

comparison between the  interpolated  and  the bin-averaged NSCAT input  data  indicates 

that  the  CBI  data is closer to  the bin-averaged field than  the SCI. Similarly to  the previous 

experiments, an index J is defined to quantify  smoothing in relation to  the reduction of 

swath  gradients.  According to  this index the CBI  method  performs  better. 

The  fundamental difference between the CBI  method and  both  the ASC and  SCI is that 

the weight distribution  (or basis function) of the CBI  method is neither fixed nor  symmetric. 

Instead,  it is updated according to  the local statistics.  This  characteristic allows the  method 

to  adjust itself to  the continuous  changes in  the wind  field and has a positive impact  in  the 

results. 
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Table 1: Results  using  simulated NSCAT data:  The columns show the  experiment identi- 

fication  number  with  subscripts cross-referencing Fig.  3; the  interpolation  parameters Np, 

h i , ,  and Q;  the  spectral index I (Eq. 8); and  the  interpolation discrepancies averaged over 

the  swath, holes and global) nu,, Auh, and  Aua; is the overall mean  statistical  error. 

Experiments 1 to 15 refer to  the CBI  method; 16 to 30 refer to  the ASC method. Columns 5 

to 9 refer to  the  results  obtained using input  data with  swath  gradients; 10 to 13 used input 

data without  gradients. 
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